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A discrete growth model following a nonlinear equation 2% = 1, V?h — v, V*h 4+ AV (Vh)? + 7,

8t

where v; is negative and 7 is the random noise of the deposition, has been introduced. For negative
v2, the standard deviation of the surface height increases as t'/% in d = 1 + 1 being consistent with
the Edwards and Wilkinson universality class. The A nonlinearity balances negative v2 such that the
effective v2 becomes positive. Time dependent surface current measurement on a tilted substrate
shows how v is renormalized. A possible mechanism for the nonlinear equation in real molecular

beam epitaxial growth is also discussed.

PACS number(s): 61.50.Cj, 05.40.+j, 05.70.Ln, 68.35.Fx

Recently, there have been considerable efforts in the
study of rough surfaces of various growth models [1].
Among them, the class of models known as “conserved”
models, which conserve the total numbers of particles
after being deposited, has been extensively studied as
a possible description of real molecular beam epitaxy
(MBE) growth [2]. There are some attempts [3,4] to clas-
sify the conserved growth models, with each universal-
ity class corresponding to a particular continuum growth
equation for the coarse grained height variable h(z,t)
which describes the growing interface as a function of
the lateral surface coordinate z and time ¢. In real MBE
growth, a particle does not easily step down at a step
edge due to the Schwoebel effect [5], which behaves like
a negative surface diffusion. In this paper, we present
a simple discrete growth model following a continuum
equation that has both negative diffusion and a cubic
nonlinearity to mimic a realistic MBE growth surface.
Since the surface structure of many growth processes is
self-affine, most efforts have concentrated on measuring
the surface fluctuations. The surface width W is defined
as the standard deviation or the root mean square fluc-
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tuation of the surface height. In a finite system of lateral
size L, the width W starting from a flat substrate scales
as [6]
W(t) ~ L*f(t/L?)
~t?, t< L7, (1)
~L* t>L?
where the scaling function f(z) is z® for z < 1 and is
constant for z > 1. The exponents 3 and z are connected
by the relation 23 = a.
The conserved current model without overhangs and

vacancies in growth is described by a continuum equation
for the surface current j:

Qh_(a’gﬁ = -V -j(x,t) + n(x,t) (2)

where h(x,t) is the height of the film and n(x,t) is a
nonconserved, uncorrelated random noise

(n(x,t)n(x',t')) = 2D§(x — x")é(t — t'). 3)
Here we consider a cubic nonlinear current j

j(x,t) = =12 Vh + v, V3h — A(Vh)3. (4)
A possible candidate for the A term is a knockout process
[7] which can suppress the Schwoebel effect. Then the
conserved continuum equation becomes [4]
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%g‘t—’i) =1, V2h — 1 VA + AV(VA)2 4+ 9(x,t).  (5)

For v > 0, it belongs to the Edwards and Wilkinson 2

(EW) universality class [8] with a = (3—d)/2 and z =2

for substrate dimension d — 1. 15T |
When v; = 0, one of the simplest conserved equation

is the Mullins-Herring curvature driven linear equation, E 1r o ]

which is obtained by putting both v, and A as zero in Eq. o o® o

(5): %’:—’Q = —vy V*h(x,t) + n(x,t). This equation can 05 7 w*;;: 1

be solved exactly giving & = (5 — d)/2 and 2z = 4, i.e., Lot lee®

B = (5 — d)/8. Since the Mullins equation allows very ol o ° J

high steps [9, 10, 3], one expects some nonlinear effects

in real MBE growth [4, 11]. Among them, the A term 05 , A ) ) . )

is the most relevant fourth order term. For A > 0, the o 1 2 3 4 5 6 7

equation becomes aha’t"t = —y VA4 AV (Vh)349(x, ). Int

The exponent values 8 = 3/10 and o = 3/4 in d = FIG. 1. Surface width W as a function of time in log-log

1+ 1 [in general dimensions 8 = (5 — d)/2(3 + d) and
a = (5 — d)/4 [4]] were suggested by both the scaling
argument and the dimensional analysis. However, direct
numerical integration of the equation shows that the A
term generates a positive effective v, and the equation
belongs [12] to the Edwards and Wilkinson universality
class. This is also supported by a recent renormalization
group analysis [13, 14].

Consider a negative v, case which mimics Schwoebel
barriers [5] reflecting an atom at a descending step. Is
there any negative v which exactly cancels the contri-
bution from the A term so that the effective vy becomes
zero? To answer the question, we present a simple dis-
crete growth model following the continuum Eq. (5), es-
pecially for v, < 0ind =1+1. When v, = 0, our model
shows EW behaviors supporting the above results that
the AV(Vh)3? term behaves like a surface tension VZh
term [12-14]. For negative vz, we find that the model
also belongs to the EW class. The A nonlinearity sup-
presses any negative v so that the effective v, becomes
positive. Hence we claim that the equation with positive
A belongs to the EW universality class even for negative
Va.

We introduce a simple discrete growth model following
Eq. (5). The general growth rule of our model is to
randomly select a siteionad—1 dimensional substrate,
and calculate local currents j for both positive direction
and negative direction following the continuum equation.
As an example for v4 = A = 0, the local current is defined
as 7(k,i) = va[h(k) — h(i)] in d=1+1 where k is either
i+ 1 or i—1 and we add a particle on site k where 3(k, 1)
is negative. If both 3('& +1,7) and 7(i — 1,4) are positive,
a particle is added on site ¢. In case both 3(1, +1,7) and
3(1. — 1,1) are negative, we add a particle on either site
randomly. In general we calculate the local current 7 by

3(k, ) = va[h(k) — h(3)] — valh(k + 1) + h(k — 1)
—2h(k) — h(i + 1) — h(i — 1) + 2h(3)]
+A[h(k) — h(2)]%. (6)

When v > 0 and v4 = A = 0, the growth rule is the
same as that of Family’s model [15]. A dropped particle
is allowed to diffuse to the nearest neighbor site whose

plot for various values of v2 and vy with A = 1. The data are,
at the top, v = —1 and v4 = 0.5 where 0.5 is added toln W
to avoid overcrowding; v = —3 and v4 = 0 (middle); and the
bottom data are for v2 = —1 and v4 =0 (8 = 0.25).

height is lower than that of the dropped site. If there
are two lower sites, one is chosen randomly. If v, < 0
and v4 = A = 0, a dropped particle is diffused to the
higher site resulting in unstable growth. Our model is a
generalization of the model to the arbitrary surface cur-
rents given in Eq. (4). Since the local particle movement
is approximately proportional to the surface current, the
discrete model follows the continuum equation very well.
The advantage of our model is that it can generate the A
nonlinear term [16]. Also the model is flexible enough to
be adjustable for continuous values of the various coeffi-
cients vz, 14, and A in the continuum equation, allowing
one to study crossover behaviors.

Our simulations are performed from a flat substrate
with periodic boundary conditions in d — 1 substrate
dimensions. The time ¢ corresponds to the number of
Monte Carlo steps. We first test our model for vy = A =0
and obtain the known result 8 = 3/8 ind = 1+1
very accurately. As usual, the surface width W2(t) =

25 r
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FIG. 2. Saturation surface width W as a function of L in
log-log plot for v2 = —3, v4 = 0, and A = 1 (bottom) and
v =—1,v4 =1,and A =1 (top).
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FIG. 3. Surface current J(m) in the saturated regime as
a function of slope m for various values of v2 and v4 with
A = 1. The data are for v2 = —3, v4 = 1, and A = 1 (top);
v = —3, vy =0, and A = 1 (middle); v2 = 0, v4 = 1, and
A =1 (bottom).

([h(z,t) — (h(z,t))]?) increases as t?# for early times and
eventually saturates when the parallel correlation t1/# is
of the order of the lateral system size L. To determine
the growth exponent 3, we measure W (t) as a function
of time for a system size L = 100000, averaging over 30
independent runs with A = 1 (d = 1+ 1). Figure 1 shows
three different cases for negative vp: v, = —1, vy = 0,
and A = 1; v, = =3, 14y = 0, and A = 1; v, = —1,
v4 = 0.5, and A = 1. Through the relation W (t) ~ t? for
early times t < L?, we obtain

B = 025+0.01, d=1+1 (7
for the three cases. Even for v, = —3, 8 remains 1/4.
When v4 = 0.5, 8 > 0.25 at the beginning, and then it
approaches 1/4 with time. Nonzero v4 only increases the
initial transient regime.

To measure the roughness exponent a describing the
saturation of the interface fluctuation, we use the relation
W (L) ~ L™ for system size L in the steady state regime
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FIG. 4. Surface current J(m,t) as a function of time for

m=1,v2=-3,va=1,and A=1.
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t > L*. We have used system sizes L = 20, 40, 80, 160,
and 320 in d = 1+ 1. From the log-log plot of W (L) and
size L, we get

a=050+002 d=1+1 (8)
for v, = —3,v4 = 0, and A = 1 as shown in Fig. 2. In the
case v = —1, vy = 1, and A = 1, o approaches 1/2 with
L slowly. This is due to the nonzero v4 which produces a
finite correlation of the slope Vh. Through the relation
z = a/B, we get z =~ 2. Our numerical results are in good
agreement with 8 = 1/4 and o = 1/2 implying that the
equation belongs to the EW universality class.

Recently Krug, Plischke, and Siegert [17] have sug-
gested a method to determine the surface diffusion coef-
ficient in various growth models by measuring the surface
current J(m) as a function of m, which is the slope of the
tilted surface. The surface current is measured by count-
ing the number of diffusion jumps in between the uphill
direction and the downhill direction. If the net current
is in the uphill direction, J(m) is positive. By expanding
J as a function of m, the effective v, can be given as
vt (t) = —2J (m = 0,t). We calculate the surface cur-
rent J(m,t) as a function of both time and surface slope
m in the simulation of deposition onto tilted substrates.
As shown in Fig. 3, ng f is positive in the saturated
regime for v = 0, v4 = 1, and A = 1, supporting the
recent numerical and analytical results [12,13]. Even for
ve = —3, the effective v, remains positive, being consis-
tent with the EW model. Nonzero v, does not change the
sign of ugf f but only reduces the magnitude of it. Fig-
ure 4 shows the time dependent surface current J(m,t)
for m =1, v, = -3, v4 = 1, and A = 1. The surface
current J is positive at the beginning due to negative v,
and slowly becomes negative as ((Vh)?) increases. In
the saturated regime (¢ — 00), the current remains neg-
ative and constant. This time dependent surface current
shows explicitly how v, is renormalized with time (in
other words with the correlation length scale). For small
m, we expect

e (t) = —J'(m = 0,t) = vy + 3A((VR)?)(2) 9)

where the ((Vh)2) term is obtained by linearizing Eq. (5)
around a tilt slope m. For negative vz, ((Vh)2) grows
with time and then saturates producing a positive effec-
tive vs.

Consider a Hamiltonian

H~ /dd—la: %(vn)2 + %(Vzh)z + i\-(Vh)“ — ph

(10)

which produces the continuum Eq. (5) up to a constant
p difference via the dynamical Langevin equation ap-
proach. The first and third terms on the right hand side
restrict the height difference |Vh| and the second term
controls curvatures. For v = 0, the fourth order term
2(Vh)* generates a square term (Vh)?2 in the effective
Hamiltonian in a simple contraction sense [12-14]. If v
is negative and v, is zero, the \ term keeps ((Vk)2) fi-
nite with the order of —1y/)\, generating positive v;
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from Eq. (9). So there is no negative v3 which pro-
duces ng f = 0. This mean field argument is consis-
tent with the results of the surface current measurement
that ugf f is positive even for negative v;. Both the neg-
ative v, term and the positive A term can be derived
from a Hamiltonian H ~ [ 4/1 — v(Vh)? as the first two
terms in a series expansion with the assumption that
v(Vh)? < 1. Whether v is positive or negative, the
growth model shows the EW universality class. When
u = 0, the Hamiltonian has equilibrium thermodynamic
behavior and satisfies detailed balance [18]. If we put
¢ = Vh, the Hamiltonian becomes the standard ¢* the-
ory with a stable double well potential [19]. Some dis-
crete models without incoming particles are well studied
in connection with the detailed balance [18]. Imposing
the detailed balance is a sufficient condition to reach an
equilibrium state. The —uh term in the Hamiltonian
causes the average surface height to grow with time. It
violates the detailed balance due to nonequilibrium dy-
namics. Since our discrete growth model does not sat-
isfy detailed balance, the model can be described by the
Hamiltonian of Eq. (10) with nonzero u. Also the dif-
fusion of the deposited particles follows [3] the surface
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current of Eq. (5), which is shown explicitly by the tilt
dependent current measurement.

In conclusion, the nonlinear A term suppresses the
Schwoebel effect and leads to downhill current, result-
ing in positive effective v;. With a Schwoebel barrier, if
a real MBE growth surface has a finite ((Vh)?2) value,
then there should be a certain term like AV (VR)? in the
continuum equation. By measuring a surface current, we
can show how v, is renormalized with time due to the
time dependent ((Vh)2). In the presence of positive A,
v, becomes irrelevant. It is surprising that the higher
order term is more relevant than the lower order term.
This is similar to the fact that the Kardar-Parisi-Zhang
nonlinearity [20] can overcome negative v, [21]. Our dis-
crete growth model can be generalized to other contin-
uum equations by modifying the growth rule following
the local current.
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